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Abstract

Flutter analysis of a wing is performed in compressible flow using state-space repre-

sentation of the unsteady aerodynamic behavior. Three different expressions are used to

incorporate corrections due to the finite-span effects of the wing in estimating the lift-curve

slope. The structural formulation is based on a Rayleigh-Ritz technique with Chebyshev

polynomials used for the wing deflections. The aeroelastic equations are solved as an eigen-

value problem to determine the flutter speed of the wing. The flutter speeds are found

to be higher in these cases, when compared to that obtained without accounting for the

flnite-span effects. The derivatives of the flutter speed with respect to the shape parame-

ters, namely, (i) aspect ratio, (ii) area, (iii) taper ratio and (iv) sweep angle, are calculated

analytically. The shape sensitivity derivatives give a linear approximation to the flutter

speed curves over a range of values of the shape parameter which is perturbed. Flut-

ter and sensitivity calculations are performed on a wing using a lifting-surface unsteady

aerodynamic theory using modules from a system of programs called FAST.
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Introduction

Several unsteady aerodynamic codes exist and new codes are emerging for application

to numerous aeroelastic problems. These codes essentially differ in the prediction of the

lift forces and moments acting on a wing. The structural and aerodynamic characteristics

of the wing are functions of its shape parameters and hence the flutter response is sensitive

to changes in shape. Sensitivity analysis is an important tool which yields information

about the dependence of the aeroelastic instability on the design parameters of the wing.

In recent years, considerable efforts are being made to integrate the aerodynamic,

structural and control aspects of the design of an aircraft. It is desirable that the unsteady

aerodynamic airloads be expressed in a state-space form. Leishman and Nguyen 1 have

represented the aerodynamic indicial response functions for compressible flow by up to

three-pole approximations, the response consisting of two parts, one due to non-circulatory

loading and the other due to circulatory loading. Using this approach, the aeroelastic

equations can be written as a set of first-order ordinary differential equations as given by

Leishman and Crouse 2. This has advantages over the CFD-based methods in the sense

that the CFD methods are in general computationally very expensive.

The problem of flutter instability was studied by Kapania and Issac 3 using the state-

space aerodynamic representation by Leishman and Nguyen 1 . However, in this study, a

constant value of the section lift-curve slope was used. But for a 3D finite wing, the wing

lift-curve slope depends on the planform of the wing and these finite-span effects had been

neglected in this study.

The planform parameters of the wing play an important role in its lifting characteristics.

It is observed that neglecting the finite-span effects of a wing has the effect of overpredicting

the lift forces and moments acting on the wing. In other words, if an aerodynamic theory

with an infinite wing lift-curve slope is used in an aeroelastic analysis, it could result in

flutter speeds which are more conservative. Several approximations for the lift-curve slope

have been reported in literature which take into account the finite-span corrections for a

finite aspect ratio wing.



Diederich 4 derived approximate expressions for the wing lift-curve slope based on both

lifting-line and lifting-surface theories. A planform parameter was introduced which is a

function of the 2D lift-curve slope, aspect ratio and sweep angle to correlate the aerody-

namic characteristics of the wing. Hauptman and Miloh 5 developed an analytical solution

for the lifting surface problem of an elliptic wing. Simple explicit expressions were derived

for the lift and moment coefficients in terms of the aspect ratio. Laitone 6 compares a set

of approximate solutions for the finite wing lift-curve slope with exact solutions derived

for an elliptic planform flat plate. These approximations to the lift-curve slope based on

planform parameters of the wing, thus enables to perform an aeroelastic analysis which

yields a better estimate of the flutter speed.

Sensitivity analysis is becoming an important design tool in engineering design appli-

cations. Sensitivity derivatives are of great importance in multidisciplinary design opti-

mization of aircrafts. Sobieski 7 discusses in detail the System Design Derivatives which

help in understanding the effect a particular design variable would have on the desired

performance of the system, if it were perturbed by a small percentage from its original

value.

The sensitivity derivatives of a system can be found using either analytical or finite dif-

ference methods. Analytical sensitivity analysis has found increased interest in engineering

design as it eliminates uncertainity in the choice of step size needed in the finite difference

method. The step size if too large leads to truncation errors and if too small leads to

round-off errors. For example, recently Livne s observed that as higher order polynomials

are used in the Ritz functions for better modeling of the structure, the more sensitive is

the finite difference derivative to the step-size used and in some cases, it is impossible to

obtain any valuable information by finite differences.

Rudisill and Bhatia 9 developed expressions for the analytical derivatives of the eigen-

values, reduced frequency and flutter speed with respect to structural parameters for use in

minimizing the total mass. Pedersen and Seyranian 1° examined the change in flutter load

as a function of change in stiffness, mass, boundary conditions or load distribution. They

showed how sensitivity analysis can be performed without any new eigenvalue analysis.
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The solution to the main and an adjoint problem provide all the necessary information for

evaluating sensitivities.

Hawk and Bristow 11 developed aerodynamic sensitivity analysis capabilities in subcrit-

ical compressible flow. They first analyzed a baseline configuration, and then calculated

a matrix containing partial derivatives of the potential at each control point with respect

to each known geometric parameter by applying a first order expansion to the baseline

configuration. The matrix of partial derivatives is used in each iteration cycle to analyze

the perturbed geometry.

Barthelemy and Bergen 12 explored the analytical shape sensitivity derivatives of the

wing's aeroelastic characteristics, such as section lift, angle of attack, rolling moment,

induced drag and divergence dynamic pressure, for subsonic subcritical flow, with respect to

geometric parameters. Results showed the characteristics nonlinearity to be small enough

to be well approximated by sensitivity based linear approximations. These approximations

are valid within a range that is useful to designers in the initial design phase. Kapania la

has obtained sensitivity derivatives of the flutter speed of a two dimensional airfoil in

incompressible flow with respect to the mass and stiffness parameters. Kapania, Bergen

and Barthelemy 14 have obtained the shape sensitivity derivatives of the flutter response of

a laminated wing in incompressible flow.

In this paper, the aerodynamic state-space model 1 is used to represent the unsteady

aerodynamic alrloads on a wing. Three different expressions are used to incorporate cor-

rections due to the finite-span effects of the wing in estimating the lift-curve slope. The

structural formulation is based on a Rayleigh-Pdtz technique with Chebyshev polynomials

chosen for the displacement function. The aeroelastic equations for the wing are solved

as an eigenvalue problem to determine the stability. The derivatives of the flutter speed

are calculated with respect to the shape parameters, namely (i) aspect ratio, (ii) area, (iii)

taper ratio, and (iv) sweep analytically. Flutter speed and sensitivity calculations are also

performed on a wing using lifting-surface unsteady aerodynamics using modules from a

system of programs called FAST (Flutter Analysis System). Flutter speeds are obtained

using a V-g type of solution.
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Aeroelastic analysis of the wing

The aerodynamic and structural model used for the flutter analysis are described in

detail in Ref. 3. Using the state-space unsteady aerodynamic representation by Leishman

and Nguyen I , the aeroelastic equations of the wing are written as a set of first order

ordinary differential equations. The system of equations is solved as an eigenvalue problem

to determine the stability.

In the study performed in Ref. 3, the finite-span effects of the wing were neglected.

However, for a finite aspect ratio wing, the wing lift-curve slope is found to be a function

of the planform parameters and corrections to lift-curve slope due to the finite-span effects

have to be accounted for.

Corrections due to finite-span effects

The finite-span effects on the aerodynamic characteristics of a wing are found to be

functions of the planform parameters. A number of approximations have been reported in

literature which accounts for the corrections to a finite aspect ratio wing.

Correction 1: One of the representations for the lift-curve slope of a finite wing is given

by Hauptman and Miloh 5, which for compressible flow can be written as

4 1
= (1)

E2(h) 1 X/1 -- M2coa2ACN_ [k + k+(_rc,i,,h)/hJ

where k = 4/rrAR and h = v/(1 - k 2) and AR is the aspect ratio of the wing. E(h) is the

complete elliptic integral of the second kind and is given by

_rl2E(h) = (1 - h2sin2¢)l/2d¢ (2)
J0

Correction 2: Another approximation 6 to the lift-curve slope for a finite aspect ratio

wing can be written for compressible flow as

2_C_v_ = l+(A_(l+r)
1 (3)

,/1 - cos2
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whereAR is the aspect ratio and .l is the sweep angle. Kida and Miyai 15 have shown that

for wings with AR >_ 4/7r, the correction factor r can be written as

r=( )[ln(¢rAR)-l]+O(_) (4)

Correction 3: Laitone in Ref. 6 reports of a very remarkable approximation derived by

Helmbold _6 for the lift-curve slope of a finite wing, which for compressible flow can be

written as

2_.4R 1 (5)CN_ = 2 + (4 + AR2) 1/2 x/1 - M2cosa,l.

where AR is the aspect ratio and A is the sweep angle.

All the three expressions for the lift-curve slope are used to compute the flutter speed

of the wing. The results obtained are compared with the flutter speed calculated by using

a value of CN_, (M), which are experimental values of CN_, obtained as functions of Mach

numbers for an airfoil section.

Sensitivity Analysis

The aeroelastic equations obtained as a set of first order ODEs is of the form

[Pl_r = [Q]w (6)

which could be written as

. = [Z]w (7)

where [E] = [pl-l[Q]

The derivative of the ith eigenvalue with respect to the critical speed is given by

ovl {el}r{e_}

where {eli and {e/r} are the ith left and right eigenvectors respectively.

(8)

by

Similarly, the derivative of the ith eigenvalue with respect to any parameter p is given

-b-; = {ei}T{_}

6



0[El can be conveniently written as
Op

O[E] O[P]-1 O[QI (lO)
op - op [Q]+ [P]-' 0p

and can be computed analytically, where

0[P]-' O[P][p]_l. (11)
Op _ _[p]-i Op

by

The analytical derivative of the critical speed with respect to parameter p is then given

eaI o)o

The [E] matrix is composed of mass, stiffness and aerodynamic matrices. The deriva-

tives of the elements in the matrix are obtained by taking the analytical derivatives of

those terms that are explicit functions of the shape parameters which are given in Ref. 17.

It should be noted that, with the corrections applied to include the finite-span effects, the

wing lift-curve slope is sensitive to changes in shape.

Evaluation Analysis

Flutter calculations for a wing in transonic flow was performed in Ref. 3. Subsequently

sensitivity analysis of the flutter speed of the wing with respect to shape parameters was

carried out. The wing is shown in Fig. 1. The wing skins are made of 0 ° laminated

Graphite/Epoxy (T300/N5208) with the following material properties: E1 = 181 x 109 Pa,

E2 = 10.3 x 109 Pa, u12 = 0.28, G12 = 7.17 x 109 Pa and) = 1600 kg/m 3. In these

calculations performed, the finite-span effects of the wing were neglected.

Three different expressions are used in this study to incorporate the corrections due to

the finite-span effects in estimating the lift-curve slope of the wing. With this correction

applied to the aerodynamics code, the wing was examined for aeroelastic instability. The

flutter speed of the wing, as predicted by these three corrections to the lift-curve slope and

the 2D lift-curve slope are shown in Fig. 2 as a function of the quarter-chord sweep angle.
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The difference between the flutter speeds obtained using the three corrections is too small,

for this wing, as seen from Fig. 2. It can be seen that when 2D lift-curve slope is used,

the flutter results are more conservative.

Table 1 gives the flutter speed predicted, with and without accounting for the finite-

span effects of the wing. The results obtained by using three different expressions for

the wing lift-curve slope are shown. For the high aspect ratio wing analysed, it can be

seen that the three expressions for finite wing lift-curve slope give almost the same flutter

speeds, but the speeds are higher than that predicted by using the 2D lift-curve slope.

The sensitivity derivative of the flutter speed with respect to shape parameters, obtained

analytically, are given in Table 2.

The flutter speeds of the wing obtained by perturbing one shape parameter at a time

from the baseline configuration are shown in Fig. 3-6. The flutter prediction from the

different corrections applied are plotted here. Similar curves for the flutter speed obtained

without applying finite-span corrections were plotted in Ref. 3. The analytical sensitivity

calculation is also superposed. The sensitivity derivative obtained forms a tangent to the

flutter speed curve at the value of the shape parameter at which it is computed.

By performing one sensitivity calculation at the baseline analytically, tb_is method gives

a linear approximation to the flutter speeds of the wing for changes in the wing shape

parameters about the baseline. This information is useful for preliminary design purposes,

as it avoids the necessity of a reanalysis for small changes in any of the shape parameters.

Work in progress

We are working on flutter analysis of a wing using a lifting-surface unsteady aerody-

namic theory which leads to a more accurate flutter solution. The modules from a system

of programs called FAST 18 (Flutter Analysis System) are used to obtain the generalized

aerodynamic forces on the wing. A free vibration analysis of the wing is performed and the

vibration modes from this analysis are fed into the modes processing module from FAST.

The subsonic kernel function matrix program then solves the subsonic downwash integral

equation for the oscillating planar wing lifting surface. The generalized force module from
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FAST then computesthe aerodynamicforcesfrom the subsonickernelmatrices. The flut-

ter speedof the wing is obtained usinga V-g type of solution. Sensitivity calculations are

performed on the flutter speedof the wing with respect to the shapeparameters. Stud-

ies on flutter and sensitivity calculations on the HSCT wing are performed using these

methods.

Concluding Remarks

The compressibleunsteady aerodynamic theory using indicial responsefunctions is

used to represent the aerodynamic forces and moments on a finite span wing. Three

different expressionsare used in this study to incorporate the finite-span corrections in

estimating the lift-curve slope of the wing. Using this aerodynamic state-spacemodel

and the structural formulation basedon Ritz technique,aeroelasticanalysisof wings were

carried out. It is found that incorporating the finite-span corrections, giveshigher flutter

speedsfor the wing, ascompared to using the 2D lift-curve slope. The useof Chebyshev

polynomials for Ritz functions gives the addedbenefit of closedform analytical expres-

sions for the derivatives of stiffnessand mass matrices with respect to the shape design

parameters of the wing. The shape sensitivity derivatives of the flutter speed of the wing

were computed analytically. Flutter speed and sensitivity calculations are also performed

using a lifting-surface unsteady aerodynamic theory using the generalized aerodynamic

forces from a system of programs called FAST and a V-g type of solution. These shape

derivatives of the flutter response of a wing would be very useful to a designer in the initial

design phase, thus avoiding the necessity of a reanalysis for small changes in the design

parameters.
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Table 1. Flutter speed of the wing at M----0.9

(Area = 20 m 2, Aspect ratio = 10, Taper ratio = 0.5)

Sweep

angle (deg)

0

15

30

Flutter speed (m/s)

2D

229.90

209.67

213.22

Correction 1 Correction 2

242.96

234.50

265.61

242.94

234.49

265.59

Correction 3

242.07

233.71

264.74

Table 2. Sensitivity of flutter speed of the wing at M--0.9

(Area = 20 m 2, Aspect ratio = 10, Taper ratio = 0.5)

with respect to shape parameters for different CN_ corrections

Sweep

angle (deg)

0

15

Parameter

3O

Aspect ratio

Area

Taper ratio

Sweep angle

Aspect ratio

Area

Taper ratio

Sweep angle

Aspect ratio

Area

Taper ratio

Sweep angle

2D

-12.6812

-6.4607

-184.8167

-104.4327

-10.1067

-4.3196

-199.1987

-37.7435

-6.6440

-5.0568

-172.6965

67.8415

Analytic flutter speed derivative

Correction 1

-14.8836

-6.8354

-196.6132

-114.8496

-12.7430

-4.7405

-228.2302

46.6035

-10.1090

-6.1086

-226.3212

191.7299

Correction 2

-14.8772

-6.8349

-196.5961

-114.833

-12.7374

-4.7402

-228.2101

46.6031

-10.t031

-6.1082

-226.3015

191.7178

Correction 3

-13.9977

-6.8101

-195.7870

-114.0609

-12.0213

-4.7281

-227.2566

46.5800

-9.4892

-6.0919

-225.3706

191.1474
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